ABSTRACT

Feature selection is an important component of many machine learning applications. In this paper, we propose a new robust feature selection method with emphasizing joint $\ell_{2,1}$-norm minimization on both loss function and regularization. The $\ell_{2,1}$-norm based loss function is robust to outliers in data points and the $\ell_{2,1}$-norm regularization selects features across all data points with joint sparsity. An efficient and general algorithm is introduced with proved convergence.

NOTATIONS AND DEFINITIONS

In the paper, the matrices are written as boldface uppercase letters, and the vectors are written as boldface lowercase letters. For matrix $M = (m_{ij})$, its i-th row, j-th column are denoted by m_i, m_j respectively. The $\ell_{2,1}$-norm of a matrix M is defined as

$$\|M\|_{2,1} = \sum_{i=1}^{n} \sqrt{\sum_{j=1}^{m} m_{ij}^2} = \sum_{i=1}^{n} \|m_i\|_2$$

The problem becomes:

$$\min_{U} \|X^TW - Y\|_{2,1} + \gamma \|W\|_{2,1}$$

The regularization term penalizes all c regression coefficients corresponding to a single feature as a whole. This has the effects of feature selection. Denote data matrix $X = [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{d \times n}$ and label matrix $Y = [y_1, y_2, \ldots, y_n] \in \mathbb{R}^{n \times c}$. Then the problem (3) can be written as

$$\min_{W} \|X^TW - Y\|_{2,1} + \gamma \|W\|_{2,1}$$

It is a convex problem. The first $\ell_{2,1}$-norm induces sparsity along the direction of data points, and the second $\ell_{2,1}$-norm induces sparsity along the direction of features. Thus this joint $\ell_{2,1}$-norm minimization produces data point selection and feature selection simultaneously.

Algorithm Convergence Analysis

Lemma 1 For any nonzero vectors $u, v \in \mathbb{R}^n$, the following inequality holds:

$$\|u\|_2 - \frac{1}{2}\|u\|_2^2 \leq \|u - v\|_2 - \frac{1}{2}\|u - v\|_2^2$$

Theorem 1 The Algorithm will monotonically decrease the objective in each iteration, and converge to the global optimum of the problem.

Proof: In the t iteration, according to the step 1 of the loop in the algorithm, we have $U_{t+1} = \arg \min_{U} Tr(U^TDAU)$, which indicates that $Tr(U_{t+1}^TDAU_0) \leq Tr(U_{t}^TDAU_0)$. That is to say,

$$\sum_{i=1}^{m} \|u_{i+1}^t\|_2^2 \leq \sum_{i=1}^{m} \|u_{i}^t\|_2^2$$

On the other hand, according to Lemma 1, we have:

$$\sum_{i=1}^{m} \left(\|u_{i+1}^t\|_2 - \frac{1}{2}\|u_{i+1}^t\|_2^2\right) \leq \sum_{i=1}^{m} \left(\|u_{i}^t\|_2 - \frac{1}{2}\|u_{i}^t\|_2^2\right)$$

Combining Eq. (7) and Eq. (8), we arrive at $\sum_{i=1}^{m} \|u_{i+1}^t\|_2 \leq \sum_{i=1}^{m} \|u_{i}^t\|_2$. That is to say, $\|U_{t+1}\|_{2,1} \leq \|U_t\|_{2,1}$. Thus the algorithm will monotonically decrease the objective in each iteration t. As the problem is convex, the algorithm will converge to the global optimum of the problem.

EXPERIMENTAL RESULTS